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A concise synthesis of protected (2S,4R)-4-hydroxyornithine
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Abstract

A short synthesis of the nonproteinogenic amino acid, (2S,4R)-4-hydroxyornithine is described. Starting from racemic benzyl glycidol,
the scaffold of the target compound was constructed in high enantio- and diastereoselectivity using Jacobsen’s hydrolytic kinetic
resolution (HKR) and regioselective opening of an epoxide as key steps.
� 2008 Elsevier Ltd. All rights reserved.
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Fig. 1.
4-Hydroxyornithine 1a–b is a nonproteinogenic amino
acid found abundantly in nature. It is a component of mar-
ine organism1 and plants,2 as well as a constituent of a
number of peptide natural products, such as the antifungal
lipopeptides echinocandin and pneumocandin,3 the K 582
type antibiotics,4 macrocyclic antibiotics such as the biphe-
nomycin A and B 2a–b,5 the b-lactam antibiotic clava-
lanine 36 and polyoxin M.7 Related 4-hydroxylated a-
amino acid, (2S,4S,6R)-4-hydroxy-5-phenylsulfinyl-norval-
ine 4 has also been identified as a key component of usti-
loxin A and B,8 a family of cyclic peptides with potent
antimitotic activity (Fig. 1).9

Various methods for the synthesis of 4-hydroxyorni-
thine including stereoselective approaches have been
reported in the literature.10 Rudolph et al. described the
synthesis of the target compound from a chiral pool start-
ing material, (S)-N-Boc-aspartic acid tert-butyl ester. This
approach, which is based on an initial homologation of
the acid side chain to form an a-nitroketone and subse-
quent diastereoselective ketone reduction to the corres-
ponding b-nitro alcohol, involves the use of an excess of
starting material (10-fold of nitromethane) and suffers from
a low overall yield of the product.11 In another approach,
0040-4039/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tetlet.2008.03.076

* Corresponding author. Tel.: +91 20 25902050; fax: +91 20 25902629.
E-mail address: pk.tripathi@ncl.res.in (P. Kumar).
the scaffold of 1 was constructed by multi-step synthesis
starting from (R)-1,2-O-isopropylideneglycerol.12 Very
recently, Paintner et al. developed a stereoselective
approach to 1 based on a bis(oxazoline) copper(II)-com-
plex mediated diastereoselective Henry reaction of nitro-
methane with the homoserine-derived aldehyde in 11
steps.13
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Scheme 3. Reagents and conditions: (a) NaN3, NH4Cl, DMF, 50 �C, 14 h,
92%; (b) TBS–Cl (TBS = tert-butyldimethylsilyl), imidazole, DMAP,
CH2Cl2, 0 �C–rt, 4 h, 97%; (c) 20% Pd(OH)2/C, H2, Boc2O, EtOAc,
12 h, 86%; (d) TEMPO, NaOCl, NaClO2, CH3CN, 82%.
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Scheme 1. Reagents and conditions: (a) (R,R)-Salen-CoIII�(OAc)
(0.5 mol %), distd H2O (0.55 equiv), 0 �C, 14 h, (47% for 5a, 43% for 5b).
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As part of our research programme aimed at developing
enantioselective syntheses of naturally occurring amino-
alcohols,14 we recently developed the asymmetric synthesis
of b-hydroxyornithine using Sharpless asymmetric dihydr-
oxylation and cyclic sulfite chemistry.15 In continuation, we
herein report a new and feasible route to 4-hydroxyornith-
ines 1a–b using Jacobsen’s hydrolytic kinetic resolution
(HKR) as the key step.

As illustrated in Scheme 1, racemic benzyl glycidol 5 was
subjected to Jacobsen’s HKR16a using (R,R)-Salen-CoIII.
OAc as the catalyst to give (S)-benzyl glycidol 5a as a single
enantiomer {½a�25

D +8.63 (c 0.40, EtOH)}, {lit.16b ½a�25
D +7.82

(c 0.40, EtOH)}, which was easily isolated from the more
polar diol 5b by distillation.

With enantiomerically pure epoxide 5a in hand our next
aim was to construct the syn-1,3-amino-alcohol. To estab-
lish the second stereogenic centre with the required stereo-
chemistry, it was thought worthwhile to examine
stereoselective epoxidation of a homoallylic azide (Scheme
2). Thus, (S)-benzyl glycidol 5a was treated with vinylmag-
nesium bromide in the presence of CuI to give the homo-
allylic alcohol 6 in 88% yield. Compound 6 was then
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Scheme 2. Reagents and conditions: (a) vinylmagnesium bromide, CuI, THF,
DMF, 70 �C, 9 h, 91%; (c) m-CPBA, CH2Cl2, 0 �C–rt, 10 h, 96%, ds, syn:anti/1
0 �C, 14 h (41% for 9a, 43% for 9b).
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converted into its O-mesyl derivative, which on treatment
with sodium azide in dry DMF furnished azide 7 with
the desired inverted stereochemistry. Compound 7 was
then subjected to m-CPBA epoxidation, and epoxide 8 thus
obtained was found to be a mixture of two diastereomers in
almost equal amounts (syn:anti/1:1.18).17 In order to
improve the diastereoselectivity, we attempted the HKR
method as depicted in Scheme 2. Thus HKR was per-
formed on 8 with the (S,S)-Salen CoIII�OAc complex
(Fig. 2) (0.5 mol %) and water (0.55 equiv) in THF
(0.55 equiv) to afford epoxide 8a as a single diastereoisomer
(as determined from 1H and 13C NMR spectral analyses)18

in 41% yield and diol 8b in 43% yield.
The ring opening of epoxide 8a was carried out with

NaN3 to give the diazido alcohol 9 in 92% yield (Scheme
3). Hydroxyl protection of 9 with tert-butyldimethylsilyl
chloride and imidazole in the presence of a catalytic
amount of DMAP afforded the silyl ether 10 in 97% yield.
Concomitant one-pot deprotection of benzyl group, reduc-
tion of both the azide groups and Boc protection of the
resulting diamine were carried out with H2/Pd(OH)2,
Boc2O to give alcohol 11 in 86% yield. Finally, amino-alco-
hol 11 was oxidized with TEMPO/NaOCl/NaClO2 to
furnish the desired protected amino acid 1219 in excellent
yield.

In conclusion, we have developed a short approach to
protected (2S,4R)-4-hydroxyornithine in high enantio-
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�20 �C, 12 h, 88%; (b) (i) MsCl, Et3N, DMAP, 0 �C–rt, 1.5 h; (ii) NaN3,
:1.18; (d) (S,S)-Salen CoIII�OAc (0.5 mol %), distd H2O (0.55 equiv), THF,



S. K. Pandey et al. / Tetrahedron Letters 49 (2008) 3297–3299 3299
and diastereomeric excess using Jacobsen’s HKR as the key
step. The syn- and anti-configuration of the 1,3-amino-
alcohol moiety can be manipulated simply by changing
the Jacobsen’s catalyst in the hydrolytic kinetic resolution
step. The target compound 12 has been synthesized from
5 in 9 steps and in 9.3% overall yield. The synthetic strategy
described here has significant potential for stereochemical
variations and further extension to other stereoisomers,
and analogues, for example (2S,4S,6R)-4-hydroxy-5-phenyl-
sulfinyl-norvaline 4. Currently, studies are in progress in
this direction.
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